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Signal detection theory (SDT) has been widely applied in situations where observers

attempt to detect or discriminate between two or more events (see Macmillan & Creelman,

1991). It has played an important role in memory research in psychology, for example, in part

because it provides a measure of memory that is separate from arbitrary response effects. In this

type of application, it is known whether or not an event actually occurred (e.g., whether or not a

word was previously presented during a study period). In other situations, however, the task is

again one of signal detection, but the event is not observed. An example is attempting to

determine whether or not a person has a psychological or physical condition, such as depression

or disease, where the true state of the person is not known. In this case, the psychological theory

is the same (i.e., SDT), with the only difference being that the events of interest are latent.

Signal detection theory can readily be applied to this type of situation by incorporating it

into a latent class analysis (Dayton, 1998; McCutcheon, 1987). As shown below, latent class

signal detection models are simply generalized linear models with latent categorical predictors

(one or more signals versus noise; see Figure 1); they are closely related to located latent class

models (e.g., Formann, 1985; Uebersax, 1993) and to discretized latent trait models (Clogg,

1988; Heinen, 1996), but they differ with respect to parameterization and perspective. For

example, the latent classes are viewed in signal detection as being qualitative, and not as arising

from the discretization of a continuous latent variable.

The utility of SDT with latent classes is illustrated in the context ofan educational

situation that can readily be conceptualized as a signal detection task: grading term papers. The

approach assumes that the graders attempt to discriminate between latent classes of papers by

using a decision criteria in combination with their perception of the quality of each paper. It is

shown that SDT offers a simple summary of the graders performance in terms of their ability to
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discriminate between the latent classes and their arbitrary use of grade categories. The approach

also provides measures of the reliability of the graders individually and as a set. Some evidence

as to the validity of the latent classes, namely their relation to students' average grade on two

course exams, is also presented.

Consider the situation where i independent observers examine stimuli and make decisions

as to which of C events are present; the discussion here focuses on the basic situation with two

events (signal and noise), but the extension to three or more events is straightforward.. A general

signal detection model for binary or rating responses and two events is

p(Yis kIX) = F(cik-diX),

where K is the number of response categories, ls k s K-1, X is a dummy coded variable that

indicates the two events, p(Yisk13) is the cumulative probability of response k by observer

conditional on X, cik is the distance of the kth response criterion from the mode of the reference

distribution for the ith observer, d; are the distances between the two underlying distributions for

the ith observer, and F is a cumulative distribution function (CDF) for the underlying

distributions. The inverse of F corresponds to a link function g, with common choices being the

logit, inverse normal, and complementary log log links, which give signal detection models

based on logistic, normal, and extreme value distributions, respectively (DeCarlo, 1998).

To extend the model to the situation where the events are latent, the observed categorical

variable X is replaced by a latent categorical variable, say X, with c = 1,2. The model can be

incorporated into a restricted latent class model by using differences between the cumulative

probabilities,

4



p(Yj=k1X) = F(cik- clidy)

p(Yi=k1X) = F(cjk- cliX) F(cjk_i-

p(l'i=k1X) = 1 F(cik_I- diX)

k = 1

1 < k < K

k = K,

(1)

for the conditional probabilities of a latent class model, which for three observers and two latent

classes can be written as

P(171,Y2,Y3) = tP(X)P(YliX)P(172iX)P(Y3IX,), (2)

where E, n(Y; I X,) = 1 for each observer, and E c (LC) = 1. The above follows from the

assumptions that there are two mutually exclusive and exhaustive latent classes and the

observers are independent.

Equations 1 and 2 offer a general class of signal detection models with latent classes that

can be used in situations that can be conceptualized in terms of SDT, such as when observers

attempt to detect or discriminate latent categorical events. The model can be fit using software

for latent class analysis that allows one to restrict the conditional probabilities using different

cumulative link functions, such as LEM (Vermunt, 1997).

Methods

Three graders (professor and two graduate assistants) graded 85 term papers from a

graduate course on measurement. The papers were graded on a scale from 1.4, with the graders

instructed to consider a below average paper as 1, an average paper as 2, an above average paper

as 3, and an excellent paper as 4. Graders were instructed to first read five or six papers, chosen

at random, before grading any of the papers, to obtain an idea of what the average paper might be

like.



Results

Table 1 shows, for latent class logistic signal detection models with from one to four

latent classes, information based goodness of fit indices, namely the Bayesian information

criterion (BIC) and Akaike's information criterion (AIC) (see Agresti, 1990). The criteria can be

used to compare nested and non-nested models, with smaller values indicating a better model.

The eigenvalues of the information matrix did not indicate identification problems for the two or

three class models, but there were near zero values for four or more classes. Different runs with

different starting values resulted in recovery of the parameter estimates for the two and three

class models.

The values of both the BIC and AIC are smallest for the model with two latent classes.

Thus, the results suggest that the graders can discriminate between two latent classes (e.g., grades

of A and B). Goodness of fit statistics for the two class model are X2 = 25.97, df=50, 2=.998 for

the chi-square statistic and L2=30.12, df=50, 2=.988 for the likelihood ratio statistic, both of

which suggest acceptable fit.

The top part of Table 2 shows the parameter estimates and standard errors for the model

with two latent classes. The estimated sizes of the latent classes are .46 and .54 for classes 1 and

2, respectively. Inspection of the estimated conditional probabilities (not shown) shows that

latent Class 1 represents a lower latent class and Class 2 a higher latent class. The detection

parameters are close in magnitude (that for observer 1 is higher, but the standard error is large),

indicating that the graders discriminate equally. A likelihood ratio test of a restricted model with

detection parameters equal across the three observers gives LR =1.22, df=2, R=.54, so the

restricted model is not rejected; the values of BIC and AIC are also both smaller than those for

the unrestricted model. The lower half of Table 2 shows the parameter estimates for the restricted
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model. The estimate of d is 2.36, so the odds of a higher response are exp(2.36)=10.6 times

higher for class 2 than for class 1, which is comparable to detection found in memory and

psychophysics experiments. The table also shows that the standard errors for the restricted model

tend to be considerably smaller. A correlation-like conditional measure of reliability, Yule's Q,

can be obtained from d as [exp(d)-1])/[exp(d)+1], which in this case gives .83. Lambda, the

relative reduction in prediction error, provides a measure of the reliability of the observers as a

set (see Clogg & Manning, 1996), and in this case its estimate is .71.

The estimates of the response criteria suggest that the three graders differ, and a

likelihood ratio test of the restriction of equal criteria across the graders leads to rejection of the

restriction. The main difference, as can be seen in Table 2, is that grader B had a higher criteria

for a grade of 2 than the other two graders. Since the graders were instructed to consider 2 as

average, this suggests that grader B had a stricter view as to what average is

Each paper can be classified into one of the latent classes using the modal posterior

probability, that is, R(X lY1,1"2,17_3). Evidence as to the validity of the classification is given by a

comparison of the average score on two course exams across the latent classes; the mean was

76.4 for Class 1 (the lower class) and 81.5 for Class 2, with the difference being significant

(t =2.6, df=83, R=.012). Thus, students in the higher latent class had an average score on two

course exams that was about five points higher. Note that if one wishes to assign finer ordinal

grades to individuals (e.g., A, A-, B+, B), this can be done using the modal posterior

probabilities by grouping the probabilities into categories. This is consistent with Clogg's (1988;

also see Uebersax, 1993) suggestion to use the product of the posterior probabilities and values

assigned to the latent classes in order to assign scores to individuals. The difference in thiscase is

that the latent classes are treated as purely categorical, so the values assigned to the latent classes
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are simply zero and one (in which case Clogg's suggested scoring system simply uses the

posterior probabilities as scores).

In sum, a fit of the latent class signal detection model indicates that the graders

discriminate equally between two latent classes, but their response criteria differ; these are

similar to results typically found in signal detection experiments with observed events. The

magnitude ofd and the measures of conditional reliability indicate good discrimination; the

latent classes also differed with respect to average exam grade, which provides evidence as to

validity.

Conclusion

Paper and essay grading has been studied from several perspectives, such as that offered

by the Rasch model and by item response theory. The approach via SDT provides a somewhat

different perspective. For one, the latent classes are viewed as being categorical, and not as

arising from a discretization of a latent trait. The result is that measurement in this case is

qualitative. Second, the discrimination parameter in SDT is viewed as a fixed characteristic of

the observer, whereas the response criteria are not; in item response theory the discrimination and

item difficulty (rater severity) parameters are both considered fixed. The view via SDT also

suggests that a large body of research and theory in experimental psychology is relevant to paper

and essay grading, and it suggests new research, such as attempting to manipulate the graders'

response criteria across sessions to see if their discrimination remains constant, as found in

classic experiments in SDT with observable events. This would provide an important

experimental validation of the model and theory.
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Table 1

Information Criteria for Latent Class Signal Detection Models

# of Classes BIC AIC

1 675.81 653.83

2 671.20 639.45

3 687.11 645.59

4 697.32 646.02

Notes: BIC = Bayesian information criterion, AIC = Akaike's information criterion.



Table 2

Parameter Estimates and Standard Errors for Latent Class Signal Detection Model with Two

Classes

C.1-1 gj2 gj3 P(X1)

Observer A 3.59 (1.60) -0.88 (0.45) 2.93 (1.48) 4.55 (1.59) .46

Observer B 2.09 (0.64) 0.46 (0.44) 2.20 (0.59) 4.30 (0.74)

Observer C 2.04 (0.68) -1.41 (0.44) 0.96 (0.51) 3.23 (0.68)

Equal Detection:

Rj2 gj3 p(X1)

Observer A 2.36 (0.37) -1.04 (0.44) 1.96 (0.55) 3.42 (0.56) .47

Observer B 2.36 (0.37) 0.55 (0.51) 2.39 (0.55) 4.52 (0.64)

Observer C 2.36 (0.37) -1.36 (0.47) 1.11 (0.54) 3.49 (0.56)
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